# 023 Why did the 35 W bulb outshine the 50 W bulb?

A bulb with a 12 V 50 W rating is designed to have a resistance of 122/50 = 2.88 Ω when in operation (P=V2/R). Similarly, a bulb rated at 12 V 35 W rating is designed to have an operating resistance of 122/35 = 4.11 Ω. The point to note is that a 50 W bulb has a smaller resistance than a 35 W bulb.

At first both bulbs were individually connected across a 6 V battery. Since the potential differences across both bulbs were the same, to compare the power dissipated in the two bulbs, we should think V2/R. So the 50 W bulb, with a smaller resistance, shone brighter.

Later the bulbs were connected in series across a 12 V battery. Since the current flowing through both bulbs was the same, to compare the power dissipated in the two bulbs, we should think I2R.  So the 35 W bulb, with larger resistance, shone brighter.

(Do note that when connected in series, the potential difference across each bulb was no longer 6 V each. By the potential divider principle, the 35 W bulb, with its larger resistance, ended up with more than 6 V of potential difference across, while the 50 W bulb had less than 6 V across)

## 3 thoughts on “023 Why did the 35 W bulb outshine the 50 W bulb?”

1. I see you don’t monetize your blog, don’t waste your traffic,
you can earn additional cash every month because
you’ve got hi quality content. If you want to know how to make extra bucks, search for: